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ABSTRACT:  This paper analyzes the effect of tire/vehicle parameters, specifically of tire/suspension 

torsional stiffnesses, on the stability of self-excited tire torsional oscillations during locked-wheel braking 

events. Using a torsionally flexible tire-wheel model and a dynamic tire-ground friction model, two system 

models for tire oscillations are considered: with suspension torsional compliance included in one but 

excluded in the other. Bifurcation analysis is conducted on both systems to derive the effect of tire/vehicle 

parameters on the stability. For the system without suspension torsional compliance, it is highlighted that 

the primary cause of unstable self-excited oscillations is the ‘Stribeck’ effect in tire-ground friction. Based 

on the parameters obtained experimentally, the bifurcation surface of vehicle velocity with respect to 

tire/suspension torsional stiffness is also given. The effect of tire/suspension torsional stiffness to the 

stability of tire torsional oscillation is qualitatively validated via comparisons between locked-wheel 

braking simulations and experiments with tires with different torsional stiffnesses. 
 

 

KEY WORDS:  Stability analysis, bifurcation analysis, tire torsional oscillation, tire/suspension torsional 

stiffness 

 

Introduction 

Tires are the components through which vehicles interact with the ground and through 

which the traction/braking force and lateral force are generated. Tire dynamics directly 

influence the vehicle’s handling, traction and braking performance, NVH and safety. In 

the previous work [1], it was noted that tire torsional dynamics, in particular, could 

compromise the performance of ABS systems significantly for certain tires with very low 

torsional stiffnesses. However, the dynamics under locked-wheel braking for such low 

torsional stiffness tires [2] [1] [3] are rarely studied. In this paper, we will show that 

during hard braking events without ABS, wheel lock-up leads to self-excited torsional 

oscillations on the tire, especially on low torsional stiffness tires, which become 

stable/unstable depending on the tire and suspension parameters. These self-excited 

torsional oscillation on tires were observed indirectly via measurements of brake torque 

and longitudinal force under locked-wheel braking experiments in [4]. In this work, we 
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provide an analytical explanation as well as experimental observations by direct 

measurement of the oscillations on the outer-ring/belt of the tire.  

In the literature, it has been observed that the self-excited oscillations of the tire may 

lead to irregular wear of tire [5, 6], reduced ride quality [7] and/or reduced braking 

performance[1]. Broadly, self-excited oscillation is a common phenomenon in many 

applications involving sliding friction [8, 9]. As an example, in [10], the stability and 

local bifurcation behavior of a friction oscillator due to exponentially decaying friction 

have been investigated and used to explain the low frequency groan of brake noise. As 

opposed to static friction models used in [10], a dynamic friction model was used to study 

the bifurcation of a single-degree-of-freedom mechanical oscillator in [11]. For tires, the 

paper [12] studied the self-excited lateral oscillation using a piecewise friction model and 

attributed the polygonal wear of the tire to this oscillation. However, the self-excited 

torsional oscillation of a tire during locked-wheel braking has not received much 

attention, partly because of the successful advent of ABS and traction control systems 

that prevent wheel lock-up. This paper presents a theoretical analysis of the self-excited 

torsional oscillation under locked-wheel braking in the absence of well-functioning ABSs 

and provides some experimental observations that support the theoretical analysis. 

The analysis of tire torsional oscillation requires appropriate tire and tire-ground 

friction models. A rigid wheel model, which is used in most traction/ABS controller 

derivations, is not suitable because the rigid wheel assumption excludes torsional 

oscillation. In [13] a simple dynamic tire model involving relaxation length concepts was 

described and validated. Later on, based on this concept, a Rigid Ring Tire Model [4] was 

proposed which allows analysis of tire vibrations. With the inclusion of the tire modes 

from in-plane [4] to out-of-plane [14] evolved the commercial dynamic tire model, 

known as the SWIFT tire model[15]. The use of the SWIFT tire model in braking events 

included the prediction of the noise component in the wheel angular velocity signal [16, 

17], the study of vehicle behavior on uneven roads[18], and tire shimmy analysis [19]. A 

complex tire dynamic model, known as FTire proposed in recent years [20, 21], 

incorporates much more degrees-of-freedom to essentially offer similar capabilities. 

While these sophisticated models represent the state of the art in tire dynamics modeling, 
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they are not suitable for the insightful simplifications we seek in order to isolate self-

excited oscillations. 

 As for the tire-ground friction model, Pacejka’s        friction model [19] is widely 

used for its good approximation of test data and low computational intensity. However, 

this friction model is based on steady-state experimental data, and tire torsional 

oscillation under locked-wheel braking is very much a dynamic phenomenon. In [22], a 

dynamic tire-ground friction model, which is called Average Lumped Parameter model or 

simply the LuGre tire model, was presented. This tire-ground friction model includes an 

internal state which represents the tread dynamics for friction generation. This model and 

its variants[23, 24] have been found to be quite suitable for analyzing friction induced 

oscillations in many applications [11, 25-27]. 

In this paper, we adopt a flexible sidewall tire model [2] which captures the tire 

torsional oscillation. This is a simplification of Rigid Ring Tire Model to the in-plane 

torsional dynamics due primarily to tire sidewall torsional flexibility. By coupling this 

model with the LuGre tire-ground friction model, the stability and local bifurcation of 

locked-wheel braking events will be analyzed. In addition, the effect of suspension 

torsional compliance and damping will be studied for their influence on the stability of 

the self-excited oscillations. 

The rest of the paper is organized as follows. Section 2 describes two tire torsional 

oscillation models, with suspension torsional compliance considered in one but neglected 

in the other. Section 3 details the analysis of the stability and local bifurcation of the 

systems, showing that the ‘Stribeck’ effect in the tire-ground friction is the major cause 

of the unstable tire torsional oscillation. The effect of tire/suspension torsional stiffnesses 

on the de-stabilizing velocity is also shown in this section based on the model parameters 

obtained experimentally. The test rig and determination of these parameters are described 

in Section 4. In Section 5, the comparison between simulations and test data for tires with 

different torsional stiffnesses are presented to show the effect of tire/suspension torsional 

stiffness on the stability of tire torsional oscillations. Finally, conclusions are given in 

Section 6. 
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2 Tire Model Adopted For Analysis 

2.1 Tire torsional oscillation model without suspension compliance 

To focus the analysis on the pure torsional dynamics, the following assumptions are 

made: We consider one corner of a vehicle, where the vehicle/wheel center is assumed to 

have a longitudinal velocity    during the locked-wheel braking event. Torsional 

deformation in the tire is assumed to remain in the linear range so that the tire sidewall 

torsional stiffness    and damping coefficient    can be taken as constants. The 

schematic of the flexible sidewall tire model adopted is shown in Figure 1, where    is the 

inertia of ring/belt of the tire and    is tire normal load. 

 

Figure 1: Flexible sidewall tire model 

We first consider the case where the wheel/hub is supported on a rigid structure (no 

suspension compliance). The equation of torsional motion for tire ring is given by: 

    ̈               ̇   (1) 

where   is tire radius and the ground friction coefficient is  . Note that the wheel/hub 

is assumed locked with applied braking torque. 

The LuGre model computes the friction coefficient by [22]: 

          ̇        (2) 

where the relative velocity    is 

         ̇   (3) 

      are parameters representing tread stiffness and damping,    is the viscous 

damping which is usually very small and can be approximated as 0.   is the internal state 

representing tread/bristle deflection and its dynamics is given by: 
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Coefficient   in (4) is a factor that reflects the tread deflection distribution, and here 

we adopt the equation from[22]: 

   
 

 
 
 

 
  (6) 

where   is the length of the contact patch. 

During locked-wheel braking, the angular velocity of the ring  ̇  can be assumed 

relatively small compared with vehicle speed   , since high slip ratios are involved in this 

regime. 

  | ̇ |      (7) 

Therefore, according to (3),    will be positive in this regime, and  

 |  |      (8) 

By defining           ̇  and     , the state-space model for the coupled 

nonlinear system of ground friction and torsionally flexible tire can be assembled as the 

three-state system: 
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Equation (9) can be written compactly as: 

  ̇   (  )  (11) 

where    [      ] , and function   is the vector function representing the 

right hand side in (9). 

2.2 Tire torsional oscillation model with suspension compliance 

It is found that in some vehicles the torsional compliance of suspension cannot be 

neglected as in Section 2.1. So in this section, the wheel/hub will be regarded as 

supported on torsionally flexible system (instead of a rigid structure) and the equation for 

the rotational motion of the hub will be added to the existing model. Again, we assume a 

linear range of this motion of the hub where the torsional stiffness and damping 

coefficient of the suspension can be regarded as constants. Figure 2 shows the system 

model with torsionally flexible suspension and a flexible sidewall tire model, where     

and     represent the torsional stiffness and viscous damping for the suspension torsional 

compliance.  

 

Figure 2: Flexible sidewall tire supported on a torsional flexible suspension 

The equation of motion for the ring dynamics is modified to: 

    ̈         (     )    ( ̇   ̇ ) (12) 

with the added dynamics of the hub/wheel: 

    ̈    (     )    ( ̇   ̇ )            ̇  (13) 

A 5th-order state space model can be assembled combining these equations with the 

LuGre tire-ground friction model: 
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  ̇   (  ) (14) 

where the additional states are      ,     ̇ ,    is the state vector and    

[              ]
 , and   is the vector function for the right hand side of the 5th order 

state space model. 

3 Stability and Local Bifurcation Analysis 

3.1 The Stribeck effect in tire-ground friction and stability analysis for 

system without suspension compliance 

As indicated by both LuGre friction model [23, 24] and Pacejka’s Magic Formula 

[19], the friction   decreases with increase of relative velocity. This negative slope is the 

so-called the Stribeck effect [28] in the tire-ground friction. Figure 3 shows the steady 

state ( ̇   )        curves obtained from the LuGre model for different vehicle speeds 

  , using values of parameters obtained experimentally (See Section 4) for example tire 2 

and listed in Appendix II. Slip ratio   is defined by: 

 𝒔  𝟏  
𝑹𝜽̇𝒓
𝒗𝒗

 (15) 

Similar curves can be seen in [29]. It can be seen that, in the regime of locked-wheel 

braking where slip ratio    , the curves have negative slopes.   

 

Figure 3: Steady state        curves by LuGre model 

Denoting the local slope at     by   (  ), at vehicle speed   , and the intercept 

with the  -axis of a line with this slope by   (  ), then the friction coefficient around 

    may be represented approximately by: 
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  (  )    (  )   (  )  (16) 

for |   |   , where   is a small constant. 

Plugging (16) with (15) into (1), a simplified equation of motion for the ring is 

obtained: 

  ̈   
  
  
   (

   
  (  )

    
 
  
  
)  ̇  

   

  
(  (  )   (  )) (17) 

It is a linear 2nd-order system and the eigenvalues can be obtained analytically: 

   (
 (  ) 

   
     

 
  
   
)  

√          (  (  )         ) 

     
 (18) 

The term under the square root is always negative for reasonable values of vehicle 

load and forward velocity. Then, it can be seen that when  (  )   , which means the 

Stribeck effect is removed, the real parts of the eigenvalues will be always negative, and 

there will be no unstable oscillation. It is only with a negative slope in        curve, 

i.e., a positive  (  ), that the system can have positive eigenvalues and lose stability 

when the following condition is satisfied: 

  (  ) 
         (19) 

It can be seen from (19) that in the presence of the Stribeck effect, higher tire load and 

larger tire effective radius will reduce the stability. It can also be concluded that with 

certain values of these parameters, the oscillation will become unstable if the vehicle 

velocity    is below a threshold 
 (  ) 

   

  
.  

It can also be noted from (18) that the sidewall torsional stiffness    does not appear 

in the real part of eigenvalues computed with the steady state friction model, which 

indicates no effect to the torsional oscillation stability by tire torsional stiffness. In the 

bifurcation analysis to be discussed later, even if the dynamic friction model used, the 

effect will be shown to be very minor. However, as will be detailed below, this 

observation is valid only for the case where suspension torsional compliances are 

ignored. 
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3.2 Local bifurcation analysis for the systems with and without suspension 

compliance 

In this section, a local bifurcation analysis is conducted to study the effect tire 

parameters, specially the torsional stiffnesses, on the stability of the system. For the 

system without suspension compliance (11), the bifurcation surfaces can be found by 

setting [30]: 

  (  )    (20) 

  
  (  )

   
|     

 |      (21) 

From (20) the equilibrium point   
  [   

     
     

 ]  is obtained, and from (21) the 

eigenvalues of the Jacobian matrix    are set to zero at the equilibrium point. The exact 

expressions for   
  and    are given in Appendix I. 

By solving (21) for  

   
    (          ) (22) 

the bifurcation surface due to         and    can be obtained.   
 (          ) is the 

de-stabilizing velocity. When      
 , the system is stable and the torsional oscillation 

of the tire is convergent, but when      
 , the system become unstable and a divergent 

tire torsional oscillation can be expected.  

Similarly, the equilibrium point   
  and Jacobian matrix    for system with suspension 

compliance (14) can be obtained and are given in Appendix I. Then, a similar equation 

for bifurcation surface of system with suspension compliance (14) can be derived: 

   
    (                  ) (23) 

Given equations as (22) and (23), de-stabilizing velocities    with respect to 

parameters such as     , stiffnesses and damping, can be plotted and studied. In this 

paper, we will focus on the effect of tire torsional stiffness    and suspension torsional 

stiffness    .  



 11 

 
Figure 4: Bifurcation curve in       plane and comparison between systems 

with/without suspension torsional flexibility 

Based on parameters obtained in Section 4 and listed in Appendix II, the bifurcation 

curves in       plane for system with and without suspension torsional compliance are 

plotted as in Figure 4 (uses parameters for tire 2). It can be seen that in the system 

without suspension torsional compliance and with dynamic tire-ground friction model 

used, the de-stabilizing    does change with different   , but the effect is rather small: 

magnitude difference of de-stabilizing    is only about 0.4m/s when    changes from 

4000 Nm/rad to 50000 Nm/rad. However, the effect of    becomes significant in the 

presence of suspension torsional flexibility. Besides, in the system without suspension 

torsional flexibility, higher    increases the de-stabilizing   , albeit slightly, making the 

oscillations ‘more unstable’; while in the system with suspension torsional flexibility, 

higher    makes the system more stable in locked-wheel braking at normal forward 

speeds, pushing the threshold speed much lower. The system without suspension 

torsional flexibility can be regarded as having an infinite suspension torsional stiffness. 

From this perspective, the observation can also be restated as: lower suspension torsional 

stiffness     improves the effect of    on the stability. With an appropriate/realistic 

choice of    , higher    is preferred to improve the stability of tire torsional oscillations. 

This is also supported by the bifurcation surface of    due to     and   , as shown in 

Figure 5. 
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Figure 5: Bifurcation surface of    due to     and    

 

It can be seen from Figure 5 that to minimize the de-stabilizing   , higher    but 

lower     is preferred. In the area with lower    , the de-stabilizing    decreases with 

increase of   ; but with higher    , this trend reverses, which explains and is consistent 

with the opposite effect of    in Figure 4 (increasing de-stabilizing    on rigid 

suspension). Conversely, while with higher   , the de-stabilizing    increases with    ; 

with low   , there will be a value for     beyond which the de-stabilizing    reaches its 

maximum value (plateaus). 

4 Test rig and experimental parameter identification 

A test rig similar to that described in [3] is developed for experimental validation of 

the tire torsional oscillations under locked-wheel braking. A McPherson strut suspension 
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the suspension, which together with the weight of the suspension assembly, can be used 

to estimate the normal force at the contact patch   . During the test, a chassis 

dynamometer is used to accelerate the tire to a specified velocity, and then the control 

mode of chassis dynamometer is switched from velocity control mode to road-load 

simulation where equivalent vehicle inertia       is specified. The hard-braking torque 

without ABS is then applied on the brake disc-pad system and is held until the 

dynamometer stops completely. As shown in Figure 6, a ring velocity sensor that is 

installed on the strut and attached to the tire ring is used to measure the velocity of the 
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ring  ̇  during the locked-wheel braking event. The wheel speed  ̇  and dynamometer 

speed       are also measured. 

 

Figure 6: Ring oscillation measurement 

 

Figure 7: Measured wheel speed  ̇  and dynamometer speed       

Figure 7 shows a set of measured wheel speed and dynamometer speeds. The equation 

of the dyno motion can be written as: 

       ̇         (24) 

Given an initial speed   ,      ( )  can be represented as a function of friction 

coefficient   : 

      ( )       (      ) (25) 

It is very difficult to measure the friction parameters accurately. In order to get an 
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enough so that in (4) the coefficient of  : 
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Combined with (8), the following relationship can be obtained from model (4):  

   
 (  )

  
 (27) 

Substitute (23) into (2), the expression for   is obtained as follows: 

    (  )     (     ) 
 |
  
  
|
 

 
(28) 

We adopted the values for   and    from [2] since their estimation requires some sort 

of a slip control system in the low slip range. Separate investigations by the authors 

indicate that these values give close fits to measurements on this test rig. Then (25) can 

be rewritten as: 

      ( )       (          ) (29) 

By solving the model prediction error minimization problem: 

      ([     ( ̅         )   ̅    ( )]
 
) (30) 

the best values       that fit the experimental data can be obtained. In (30),  ̅    ( ) 

and  ̅  are, respectively, the measured dynamometer speed and initial speed value. 

Multiple tests are implemented and the averaged values for    and    are used as the tire-

dynamometer friction parameters (given in Appendix II). With the adopted values for    

and    from [2], a complete characterization of the dynamic LuGre model for tire-

dynamometer friction is obtained.  

Two tires (numbered tire 1 and tire 2) with different torsional stiffness and damping 

values are considered here to verify the above-discussed effect of the tire torsional 

stiffnesses on the stability of the tire torsional oscillation under locked-wheel braking 

events. It is expected that the friction coefficients are different for different tires. 

Therefore, we have experimentally identified         and         for, tire 1 and tire 2, 

respectively, and listed them in Appendix II.  

Torsional stiffness of tire 1    , as well as the torsional stiffness of suspension    , 

are measured from the torsional deformation under controlled torque. The value of 
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measured     on the test rig is listed in Appendix II. It can be seen that this value falls in 

the low     side in Figure 5.  

However, tire 2 is a low torsional stiffness tire and is found to have a very nonlinear 

torsional stiffness, so a nonlinear torsional stiffness curve is obtained by Finite Element 

Analysis (FEA) for tire2, as shown in Figure 8. 

 

Figure 8: Nonlinear torsional stiffness of tire 2 

The torsional viscous damping    or     are obtained via measuring the torsional 

oscillation response and then curving fitting to the magnitude and phase angle of the 

response, as shown in Figure 9 which uses parameters for tire 2. 

 

Figure 9: Measured and fitted oscillation signals for tire 2 

The obtained torsional stiffness and damping values     and     for tire 1,     for tire 

2 and         for the suspension torsional compliance are given in Appendix II. It can be 
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5 Comparison between simulations and experiments 

The locked-wheel braking tests were conducted on the same suspension and test rig 

using tire 1 and tire 2.  Various signals are recorded and compared with simulation 

results. The simulation model combining system (14) and dyno dynamics (24) was 

implemented in Simulink, with the initial condition: 

     ̇     ̇    (31) 

where  ̇   and  ̇   are the initial velocities of the ring and wheel, respectively.  

Figure 10 shows the comparison between simulation and the test data on the dyno 

velocity       and ring velocity  ̇   for tire 2. It can be seen that the dyno velocity 

curves are almost on top of each other, which indicates a good fit for the friction 

parameters, such as        . For the ring velocity, both simulation and test data show a 

rapid drop to around 0, indicating the quick locking of the wheel. The most interesting 

result is the divergent oscillation in ring velocity after initial convergence. This change in 

the stability property is also predicted by the simulation result, and corresponding dyno 

velocity where the oscillation begins to be divergent (de-stabilizing velocity) can also be 

found to be about 4m/s. 

 

Figure 10: Comparison between test data and simulation results for tire 2 
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As a comparison, tire 1 was used to repeat the experiment and the simulations were re-

run with its parameters. Figure 11 shows the comparison between simulation and the test 

data on the dyno velocity       and ring velocity  ̇   for tire 1. In contrast with tire 2, 

the ring oscillation is seen to converge quickly in both the test data and simulation after 

the wheel locked around 25.4s. No divergent oscillation is found when dyno velocity is 

above 1m/s.    

 

Figure 11: Comparison between test data and simulation results for tire 1 
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the tire torsional stiffness is high, the de-stabilizing velocity is reduced from around 4m/s 
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so that the torsional oscillation of the tire could be isolated. Comparative tests were 

implemented using tires with different torsional stiffnesses. From these analysis and 

comparisons with test results, the following conclusions can be made: 

1) It is shown that the primary cause of the unstable oscillation is the Stribeck effect 

in tire-ground friction.  

2) Without suspension torsional compliance (torsionally rigid suspension), the effect 

of the tire torsional stiffness on the stability of tire torsional oscillations is very 

limited. With low suspension torsional compliance, the effect becomes significant, 

and higher torsional stiffness improves the stability as it reduces the de-stabilizing 

velocity.  

3) The effect of tire torsional stiffness on the stability of the self-excited torsional 

oscillations is validated via test results on tires with drastically different torsional 

stiffnesses running on a torsionally flexible suspension. 

List of Figure Captions 
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FIG. 4 - Bifurcation curve in       plane and comparison between systems 

with/without suspension torsional flexibility 
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FIG. 10 - Comparison between test data and simulation results for tire 2 
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Appendix I: Jacobian Matrices 

 

Equilibrium point for system without suspension compliance (11):  
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Equilibrium point for system without suspension compliance (14):  
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Appendix II: Value of the parameters: 

Parameters Values 
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 [ ] 0.2 

  [ ] 2100 

  [   ] 623 

  [   ] 1.72 

  [   ] 0 
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